Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVE(filter(s(s(X)), cons(Y, Z))) → FILTER(X, sieve(Y))
FROM(mark(X)) → FROM(X)
PROPER(divides(X1, X2)) → DIVIDES(proper(X1), proper(X2))
PROPER(filter(X1, X2)) → PROPER(X1)
PROPER(filter(X1, X2)) → PROPER(X2)
PROPER(if(X1, X2, X3)) → PROPER(X1)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
SIEVE(mark(X)) → SIEVE(X)
PROPER(head(X)) → PROPER(X)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → IF(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
HEAD(mark(X)) → HEAD(X)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → CONS(Y, filter(X, sieve(Y)))
ACTIVE(filter(X1, X2)) → ACTIVE(X2)
DIVIDES(ok(X1), ok(X2)) → DIVIDES(X1, X2)
ACTIVE(filter(X1, X2)) → FILTER(X1, active(X2))
PROPER(cons(X1, X2)) → PROPER(X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)
DIVIDES(mark(X1), X2) → DIVIDES(X1, X2)
ACTIVE(if(X1, X2, X3)) → IF(active(X1), X2, X3)
ACTIVE(sieve(cons(X, Y))) → CONS(X, filter(X, sieve(Y)))
PROPER(from(X)) → FROM(proper(X))
PROPER(s(X)) → S(proper(X))
PROPER(tail(X)) → TAIL(proper(X))
FILTER(X1, mark(X2)) → FILTER(X1, X2)
TAIL(mark(X)) → TAIL(X)
ACTIVE(head(X)) → HEAD(active(X))
ACTIVE(s(X)) → ACTIVE(X)
PROPER(divides(X1, X2)) → PROPER(X1)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(primes) → S(0)
FROM(ok(X)) → FROM(X)
ACTIVE(from(X)) → FROM(s(X))
S(ok(X)) → S(X)
CONS(mark(X1), X2) → CONS(X1, X2)
FILTER(mark(X1), X2) → FILTER(X1, X2)
TOP(mark(X)) → PROPER(X)
ACTIVE(sieve(X)) → SIEVE(active(X))
ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(sieve(cons(X, Y))) → FILTER(X, sieve(Y))
SIEVE(ok(X)) → SIEVE(X)
ACTIVE(divides(X1, X2)) → DIVIDES(X1, active(X2))
TOP(ok(X)) → ACTIVE(X)
PROPER(sieve(X)) → SIEVE(proper(X))
ACTIVE(filter(X1, X2)) → FILTER(active(X1), X2)
FILTER(ok(X1), ok(X2)) → FILTER(X1, X2)
ACTIVE(divides(X1, X2)) → ACTIVE(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(if(X1, X2, X3)) → PROPER(X3)
PROPER(if(X1, X2, X3)) → IF(proper(X1), proper(X2), proper(X3))
PROPER(tail(X)) → PROPER(X)
ACTIVE(divides(X1, X2)) → ACTIVE(X1)
TAIL(ok(X)) → TAIL(X)
PROPER(from(X)) → PROPER(X)
ACTIVE(primes) → SIEVE(from(s(s(0))))
ACTIVE(filter(s(s(X)), cons(Y, Z))) → DIVIDES(s(s(X)), Y)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → FILTER(s(s(X)), Z)
ACTIVE(tail(X)) → TAIL(active(X))
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
TOP(ok(X)) → TOP(active(X))
PROPER(sieve(X)) → PROPER(X)
S(mark(X)) → S(X)
PROPER(if(X1, X2, X3)) → PROPER(X2)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
ACTIVE(primes) → FROM(s(s(0)))
ACTIVE(primes) → S(s(0))
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
PROPER(head(X)) → HEAD(proper(X))
ACTIVE(filter(s(s(X)), cons(Y, Z))) → SIEVE(Y)
ACTIVE(filter(X1, X2)) → ACTIVE(X1)
ACTIVE(divides(X1, X2)) → DIVIDES(active(X1), X2)
ACTIVE(from(X)) → S(X)
DIVIDES(X1, mark(X2)) → DIVIDES(X1, X2)
PROPER(divides(X1, X2)) → PROPER(X2)
ACTIVE(sieve(cons(X, Y))) → SIEVE(Y)
ACTIVE(head(X)) → ACTIVE(X)
TOP(mark(X)) → TOP(proper(X))
HEAD(ok(X)) → HEAD(X)
PROPER(filter(X1, X2)) → FILTER(proper(X1), proper(X2))
ACTIVE(from(X)) → FROM(active(X))
ACTIVE(from(X)) → CONS(X, from(s(X)))
ACTIVE(s(X)) → S(active(X))

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(filter(s(s(X)), cons(Y, Z))) → FILTER(X, sieve(Y))
FROM(mark(X)) → FROM(X)
PROPER(divides(X1, X2)) → DIVIDES(proper(X1), proper(X2))
PROPER(filter(X1, X2)) → PROPER(X1)
PROPER(filter(X1, X2)) → PROPER(X2)
PROPER(if(X1, X2, X3)) → PROPER(X1)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
SIEVE(mark(X)) → SIEVE(X)
PROPER(head(X)) → PROPER(X)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → IF(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
HEAD(mark(X)) → HEAD(X)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → CONS(Y, filter(X, sieve(Y)))
ACTIVE(filter(X1, X2)) → ACTIVE(X2)
DIVIDES(ok(X1), ok(X2)) → DIVIDES(X1, X2)
ACTIVE(filter(X1, X2)) → FILTER(X1, active(X2))
PROPER(cons(X1, X2)) → PROPER(X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)
DIVIDES(mark(X1), X2) → DIVIDES(X1, X2)
ACTIVE(if(X1, X2, X3)) → IF(active(X1), X2, X3)
ACTIVE(sieve(cons(X, Y))) → CONS(X, filter(X, sieve(Y)))
PROPER(from(X)) → FROM(proper(X))
PROPER(s(X)) → S(proper(X))
PROPER(tail(X)) → TAIL(proper(X))
FILTER(X1, mark(X2)) → FILTER(X1, X2)
TAIL(mark(X)) → TAIL(X)
ACTIVE(head(X)) → HEAD(active(X))
ACTIVE(s(X)) → ACTIVE(X)
PROPER(divides(X1, X2)) → PROPER(X1)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(primes) → S(0)
FROM(ok(X)) → FROM(X)
ACTIVE(from(X)) → FROM(s(X))
S(ok(X)) → S(X)
CONS(mark(X1), X2) → CONS(X1, X2)
FILTER(mark(X1), X2) → FILTER(X1, X2)
TOP(mark(X)) → PROPER(X)
ACTIVE(sieve(X)) → SIEVE(active(X))
ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(sieve(cons(X, Y))) → FILTER(X, sieve(Y))
SIEVE(ok(X)) → SIEVE(X)
ACTIVE(divides(X1, X2)) → DIVIDES(X1, active(X2))
TOP(ok(X)) → ACTIVE(X)
PROPER(sieve(X)) → SIEVE(proper(X))
ACTIVE(filter(X1, X2)) → FILTER(active(X1), X2)
FILTER(ok(X1), ok(X2)) → FILTER(X1, X2)
ACTIVE(divides(X1, X2)) → ACTIVE(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(s(X)) → PROPER(X)
PROPER(if(X1, X2, X3)) → PROPER(X3)
PROPER(if(X1, X2, X3)) → IF(proper(X1), proper(X2), proper(X3))
PROPER(tail(X)) → PROPER(X)
ACTIVE(divides(X1, X2)) → ACTIVE(X1)
TAIL(ok(X)) → TAIL(X)
PROPER(from(X)) → PROPER(X)
ACTIVE(primes) → SIEVE(from(s(s(0))))
ACTIVE(filter(s(s(X)), cons(Y, Z))) → DIVIDES(s(s(X)), Y)
ACTIVE(filter(s(s(X)), cons(Y, Z))) → FILTER(s(s(X)), Z)
ACTIVE(tail(X)) → TAIL(active(X))
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
TOP(ok(X)) → TOP(active(X))
PROPER(sieve(X)) → PROPER(X)
S(mark(X)) → S(X)
PROPER(if(X1, X2, X3)) → PROPER(X2)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
ACTIVE(primes) → FROM(s(s(0)))
ACTIVE(primes) → S(s(0))
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
PROPER(head(X)) → HEAD(proper(X))
ACTIVE(filter(s(s(X)), cons(Y, Z))) → SIEVE(Y)
ACTIVE(filter(X1, X2)) → ACTIVE(X1)
ACTIVE(divides(X1, X2)) → DIVIDES(active(X1), X2)
ACTIVE(from(X)) → S(X)
DIVIDES(X1, mark(X2)) → DIVIDES(X1, X2)
PROPER(divides(X1, X2)) → PROPER(X2)
ACTIVE(sieve(cons(X, Y))) → SIEVE(Y)
ACTIVE(head(X)) → ACTIVE(X)
TOP(mark(X)) → TOP(proper(X))
HEAD(ok(X)) → HEAD(X)
PROPER(filter(X1, X2)) → FILTER(proper(X1), proper(X2))
ACTIVE(from(X)) → FROM(active(X))
ACTIVE(from(X)) → CONS(X, from(s(X)))
ACTIVE(s(X)) → S(active(X))

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 12 SCCs with 38 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DIVIDES(ok(X1), ok(X2)) → DIVIDES(X1, X2)
DIVIDES(mark(X1), X2) → DIVIDES(X1, X2)
DIVIDES(X1, mark(X2)) → DIVIDES(X1, X2)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DIVIDES(ok(X1), ok(X2)) → DIVIDES(X1, X2)
DIVIDES(mark(X1), X2) → DIVIDES(X1, X2)
DIVIDES(X1, mark(X2)) → DIVIDES(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FILTER(ok(X1), ok(X2)) → FILTER(X1, X2)
FILTER(mark(X1), X2) → FILTER(X1, X2)
FILTER(X1, mark(X2)) → FILTER(X1, X2)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FILTER(ok(X1), ok(X2)) → FILTER(X1, X2)
FILTER(mark(X1), X2) → FILTER(X1, X2)
FILTER(X1, mark(X2)) → FILTER(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF(mark(X1), X2, X3) → IF(X1, X2, X3)
IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF(mark(X1), X2, X3) → IF(X1, X2, X3)
IF(ok(X1), ok(X2), ok(X3)) → IF(X1, X2, X3)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TAIL(ok(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TAIL(ok(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

HEAD(mark(X)) → HEAD(X)
HEAD(ok(X)) → HEAD(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

HEAD(mark(X)) → HEAD(X)
HEAD(ok(X)) → HEAD(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FROM(mark(X)) → FROM(X)
FROM(ok(X)) → FROM(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FROM(mark(X)) → FROM(X)
FROM(ok(X)) → FROM(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SIEVE(mark(X)) → SIEVE(X)
SIEVE(ok(X)) → SIEVE(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SIEVE(mark(X)) → SIEVE(X)
SIEVE(ok(X)) → SIEVE(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(if(X1, X2, X3)) → PROPER(X2)
PROPER(filter(X1, X2)) → PROPER(X1)
PROPER(filter(X1, X2)) → PROPER(X2)
PROPER(if(X1, X2, X3)) → PROPER(X1)
PROPER(head(X)) → PROPER(X)
PROPER(divides(X1, X2)) → PROPER(X2)
PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(if(X1, X2, X3)) → PROPER(X3)
PROPER(tail(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(from(X)) → PROPER(X)
PROPER(divides(X1, X2)) → PROPER(X1)
PROPER(sieve(X)) → PROPER(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(if(X1, X2, X3)) → PROPER(X2)
PROPER(filter(X1, X2)) → PROPER(X1)
PROPER(filter(X1, X2)) → PROPER(X2)
PROPER(if(X1, X2, X3)) → PROPER(X1)
PROPER(head(X)) → PROPER(X)
PROPER(divides(X1, X2)) → PROPER(X2)
PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(if(X1, X2, X3)) → PROPER(X3)
PROPER(tail(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(from(X)) → PROPER(X)
PROPER(divides(X1, X2)) → PROPER(X1)
PROPER(sieve(X)) → PROPER(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(divides(X1, X2)) → ACTIVE(X2)
ACTIVE(filter(X1, X2)) → ACTIVE(X2)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(divides(X1, X2)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(filter(X1, X2)) → ACTIVE(X1)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(from(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QDPSizeChangeProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(divides(X1, X2)) → ACTIVE(X2)
ACTIVE(filter(X1, X2)) → ACTIVE(X2)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(divides(X1, X2)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(filter(X1, X2)) → ACTIVE(X1)
ACTIVE(from(X)) → ACTIVE(X)
ACTIVE(if(X1, X2, X3)) → ACTIVE(X1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(X)) → TOP(proper(X))
TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule TOP(ok(X)) → TOP(active(X)) at position [0] we obtained the following new rules:

TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(if(x0, x1, x2))) → TOP(if(active(x0), x1, x2))
TOP(ok(if(false, x0, x1))) → TOP(mark(x1))
TOP(ok(divides(x0, x1))) → TOP(divides(active(x0), x1))
TOP(ok(filter(x0, x1))) → TOP(filter(active(x0), x1))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
TOP(ok(sieve(x0))) → TOP(sieve(active(x0)))
TOP(ok(sieve(cons(x0, x1)))) → TOP(mark(cons(x0, filter(x0, sieve(x1)))))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(primes)) → TOP(mark(sieve(from(s(s(0))))))
TOP(ok(if(true, x0, x1))) → TOP(mark(x0))
TOP(ok(filter(x0, x1))) → TOP(filter(x0, active(x1)))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(ok(divides(x0, x1))) → TOP(divides(x0, active(x1)))
TOP(ok(filter(s(s(x0)), cons(x1, x2)))) → TOP(mark(if(divides(s(s(x0)), x1), filter(s(s(x0)), x2), cons(x1, filter(x0, sieve(x1))))))
TOP(ok(tail(cons(x0, x1)))) → TOP(mark(x1))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
QDP
                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(ok(if(x0, x1, x2))) → TOP(if(active(x0), x1, x2))
TOP(ok(if(false, x0, x1))) → TOP(mark(x1))
TOP(ok(divides(x0, x1))) → TOP(divides(active(x0), x1))
TOP(ok(filter(x0, x1))) → TOP(filter(active(x0), x1))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
TOP(ok(sieve(x0))) → TOP(sieve(active(x0)))
TOP(ok(sieve(cons(x0, x1)))) → TOP(mark(cons(x0, filter(x0, sieve(x1)))))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(primes)) → TOP(mark(sieve(from(s(s(0))))))
TOP(ok(if(true, x0, x1))) → TOP(mark(x0))
TOP(ok(filter(x0, x1))) → TOP(filter(x0, active(x1)))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(mark(X)) → TOP(proper(X))
TOP(ok(tail(cons(x0, x1)))) → TOP(mark(x1))
TOP(ok(filter(s(s(x0)), cons(x1, x2)))) → TOP(mark(if(divides(s(s(x0)), x1), filter(s(s(x0)), x2), cons(x1, filter(x0, sieve(x1))))))
TOP(ok(divides(x0, x1))) → TOP(divides(x0, active(x1)))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule TOP(mark(X)) → TOP(proper(X)) at position [0] we obtained the following new rules:

TOP(mark(primes)) → TOP(ok(primes))
TOP(mark(divides(x0, x1))) → TOP(divides(proper(x0), proper(x1)))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(mark(0)) → TOP(ok(0))
TOP(mark(false)) → TOP(ok(false))
TOP(mark(sieve(x0))) → TOP(sieve(proper(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(mark(if(x0, x1, x2))) → TOP(if(proper(x0), proper(x1), proper(x2)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(mark(true)) → TOP(ok(true))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(filter(x0, x1))) → TOP(filter(proper(x0), proper(x1)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
QDP
                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(primes)) → TOP(ok(primes))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(ok(if(x0, x1, x2))) → TOP(if(active(x0), x1, x2))
TOP(ok(if(false, x0, x1))) → TOP(mark(x1))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
TOP(mark(sieve(x0))) → TOP(sieve(proper(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(mark(if(x0, x1, x2))) → TOP(if(proper(x0), proper(x1), proper(x2)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(if(true, x0, x1))) → TOP(mark(x0))
TOP(ok(filter(x0, x1))) → TOP(filter(x0, active(x1)))
TOP(mark(true)) → TOP(ok(true))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(filter(s(s(x0)), cons(x1, x2)))) → TOP(mark(if(divides(s(s(x0)), x1), filter(s(s(x0)), x2), cons(x1, filter(x0, sieve(x1))))))
TOP(mark(divides(x0, x1))) → TOP(divides(proper(x0), proper(x1)))
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(divides(x0, x1))) → TOP(divides(active(x0), x1))
TOP(ok(filter(x0, x1))) → TOP(filter(active(x0), x1))
TOP(ok(sieve(x0))) → TOP(sieve(active(x0)))
TOP(mark(false)) → TOP(ok(false))
TOP(mark(0)) → TOP(ok(0))
TOP(ok(sieve(cons(x0, x1)))) → TOP(mark(cons(x0, filter(x0, sieve(x1)))))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(primes)) → TOP(mark(sieve(from(s(s(0))))))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(filter(x0, x1))) → TOP(filter(proper(x0), proper(x1)))
TOP(ok(tail(cons(x0, x1)))) → TOP(mark(x1))
TOP(ok(divides(x0, x1))) → TOP(divides(x0, active(x1)))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ Narrowing
              ↳ QDP
                ↳ Narrowing
                  ↳ QDP
                    ↳ DependencyGraphProof
QDP

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(primes)) → TOP(ok(primes))
TOP(mark(from(x0))) → TOP(from(proper(x0)))
TOP(ok(if(x0, x1, x2))) → TOP(if(active(x0), x1, x2))
TOP(ok(if(false, x0, x1))) → TOP(mark(x1))
TOP(ok(from(x0))) → TOP(mark(cons(x0, from(s(x0)))))
TOP(mark(sieve(x0))) → TOP(sieve(proper(x0)))
TOP(mark(tail(x0))) → TOP(tail(proper(x0)))
TOP(mark(if(x0, x1, x2))) → TOP(if(proper(x0), proper(x1), proper(x2)))
TOP(mark(head(x0))) → TOP(head(proper(x0)))
TOP(ok(if(true, x0, x1))) → TOP(mark(x0))
TOP(ok(filter(x0, x1))) → TOP(filter(x0, active(x1)))
TOP(ok(cons(x0, x1))) → TOP(cons(active(x0), x1))
TOP(ok(head(x0))) → TOP(head(active(x0)))
TOP(ok(filter(s(s(x0)), cons(x1, x2)))) → TOP(mark(if(divides(s(s(x0)), x1), filter(s(s(x0)), x2), cons(x1, filter(x0, sieve(x1))))))
TOP(mark(divides(x0, x1))) → TOP(divides(proper(x0), proper(x1)))
TOP(ok(from(x0))) → TOP(from(active(x0)))
TOP(mark(s(x0))) → TOP(s(proper(x0)))
TOP(ok(filter(x0, x1))) → TOP(filter(active(x0), x1))
TOP(ok(divides(x0, x1))) → TOP(divides(active(x0), x1))
TOP(ok(sieve(x0))) → TOP(sieve(active(x0)))
TOP(ok(sieve(cons(x0, x1)))) → TOP(mark(cons(x0, filter(x0, sieve(x1)))))
TOP(ok(s(x0))) → TOP(s(active(x0)))
TOP(ok(primes)) → TOP(mark(sieve(from(s(s(0))))))
TOP(ok(head(cons(x0, x1)))) → TOP(mark(x0))
TOP(mark(cons(x0, x1))) → TOP(cons(proper(x0), proper(x1)))
TOP(mark(filter(x0, x1))) → TOP(filter(proper(x0), proper(x1)))
TOP(ok(divides(x0, x1))) → TOP(divides(x0, active(x1)))
TOP(ok(tail(cons(x0, x1)))) → TOP(mark(x1))
TOP(ok(tail(x0))) → TOP(tail(active(x0)))

The TRS R consists of the following rules:

active(primes) → mark(sieve(from(s(s(0)))))
active(from(X)) → mark(cons(X, from(s(X))))
active(head(cons(X, Y))) → mark(X)
active(tail(cons(X, Y))) → mark(Y)
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
active(filter(s(s(X)), cons(Y, Z))) → mark(if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))))
active(sieve(cons(X, Y))) → mark(cons(X, filter(X, sieve(Y))))
active(sieve(X)) → sieve(active(X))
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
active(if(X1, X2, X3)) → if(active(X1), X2, X3)
active(filter(X1, X2)) → filter(active(X1), X2)
active(filter(X1, X2)) → filter(X1, active(X2))
active(divides(X1, X2)) → divides(active(X1), X2)
active(divides(X1, X2)) → divides(X1, active(X2))
sieve(mark(X)) → mark(sieve(X))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
if(mark(X1), X2, X3) → mark(if(X1, X2, X3))
filter(mark(X1), X2) → mark(filter(X1, X2))
filter(X1, mark(X2)) → mark(filter(X1, X2))
divides(mark(X1), X2) → mark(divides(X1, X2))
divides(X1, mark(X2)) → mark(divides(X1, X2))
proper(primes) → ok(primes)
proper(sieve(X)) → sieve(proper(X))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
proper(if(X1, X2, X3)) → if(proper(X1), proper(X2), proper(X3))
proper(true) → ok(true)
proper(false) → ok(false)
proper(filter(X1, X2)) → filter(proper(X1), proper(X2))
proper(divides(X1, X2)) → divides(proper(X1), proper(X2))
sieve(ok(X)) → ok(sieve(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
if(ok(X1), ok(X2), ok(X3)) → ok(if(X1, X2, X3))
filter(ok(X1), ok(X2)) → ok(filter(X1, X2))
divides(ok(X1), ok(X2)) → ok(divides(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.